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1. Introduction

Field theory and string theory can both be successfully dealt with in the perturbative

regime, where for the latter we essentially only have a perturbative definition of the the-

ory. However, in particular the vacuum structure of both theories depends on the non-

perturbative dynamics. In a semi-classical approach such non-perturbative effects are gen-

erated by fluctuations around stationary topologically non-trivial field configurations, such

as instantons.

In general, these instantons can generate all kinds of effects, but for four-dimensional

N = 1 supersymmetric theories their contribution to the holomorphic superpotential can
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be understood quite explicitly. This has nicely been demonstrated by the celebrated deter-

mination of the dynamically generated superpotential for SU(Nc) SQCD with Nf flavours

by Affleck, Dine and Seiberg (ADS) [1]. In their paper holomorphy and various local and

global symmetries like gauge-, flavour- and R-symmetry were invoked to argue that the

superpotential can only have a very peculiar form, whose coefficient was then shown to be

non-vanishing for the special case of SU(2).1

As mentioned above, instanton effects are also very important for an understanding of

the vacuum structure (these days called the landscape) of string compactifications. Even

though we do not have a non-perturbative definition of the theory, by analogy to field

theory rules for dealing with such string instantons have been elaborated on [3 – 14]. The

field theory techniques are described in [15, 16] (and references therein). These instantons

are given by wrapped string world-sheets and by wrapped Euclidean D-branes and, like

in field theory, their contributions to the space-time superpotential are quite restricted.

These contributions can be computed in a semi-classical approach, i.e. one involving only

the tree level instanton action and a one-loop determinant for the fluctuations around the

instanton. Recently, in the KKLT scenario [17], wrapped D3-brane instantons have also

played a major role in eventually fixing all moduli. For concrete orientifold realisations of

KKLT see [18 – 20].

For type IIA orientifold models on Calabi-Yau spaces with intersecting D6-branes (and

their T-dual cousins) the contribution of wrapped Euclidean D2-branes, hereafter called

E2-branes, to the superpotential has been determined in [21] (see also [22 – 24]). Since both

the D6-branes and the E2-instantons are described by an open string theory, it was shown

that the entire instanton computation boils down to the evaluation of disc and 1-loop string

diagrams with boundary (changing) operators inserted. Here both the D6-branes and the

E2-instantons wrap compact three-cycles of the Calabi-Yau manifold. Note that in [21] the

instanton calculus was developed for the case that the instantons do not lie on top of any

stack of D6-branes, implying that only charged fermionic zero modes appear.

The natural question now arises whether one can consistently recover known field

theory instanton effects like the ADS superpotential from string theory. Recall that N = 1

SQCD with gauge group SU(Nc) and Nf flavours, Φf , Φ̃f ′ with Nf = Nc − 1 does indeed

have a non-perturbatively generated superpotential. In [1] the authors argued that in this

case the superpotential is generated by a single field theory instanton and using various

symmetries they restricted the form of the superpotential to be

W =
Λ3Nc−Nf

det[Mff ′ ]
,

with the meson matrix of rank Nf defined as Mff ′ = Φc
f Φ̃c,f ′ . The above question has

been posed in [25] for the case of the runaway quiver gauge theory of [26]. There the gauge

theory was SU(3) with two quarks and the stringy origin of the constraint Nf = Nc − 1

was not really obvious. The above question also relates to recent attempts at freezing

string moduli via flux induced superpotentials, often extended by known non-perturbative

1cf. also the explicit determination of prefactors by Cordes [2].
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superpotentials, which were actually only derived for supersymmetric Yang-Mills theories.

For such a simple addition of these terms to make any sense, one must ensure that string

theory indeed does generate these field theory superpotentials by itself. Of course, one

expects that the field theory result can only be obtained in certain limits of string theory,

so one must know under what circumstances one can trust them.

Since such effects scale like exp(−1/g2
SU(Nc)

) in field theory, it is clear that the E2-

brane has to lie on top of the U(Nc) stack of D6-branes. In this case additional bosonic

zero modes appear which have to be integrated over. An E2-instanton inside a D6-brane

is very much like the D3-D(−1) system, which is known to give a stringy realization of the

ADHM instanton moduli space in the field theory limit [27].

In this paper we show that applying the general formalism of [21] to a locally engineered

system of colour and flavour D6-branes with an E2-instanton inside the colour branes indeed

gives the ADS superpotential in the field theory limit. Let us emphasise that this result

provides an important check on the rules proposed in [21]. We note that we are not using

any a priori assumptions to fix the shape of the superpotential, but carry out the non-

trivial evaluation of the zero mode integrals in full glory. To our knowledge, such a direct

computation has so far only been carried out in [2], though with a different instanton zero

mode measure than the ADHM measure which arises naturally in string theory. As already

used in [25], the D-brane realisation of both the gauge theory and the instanton directly

leads to extended quiver diagrams containing both the D6-branes and the E2-instantons.

This allows one to diagrammatically encode both the massless spectrum including the

instanton zero modes and possible allowed disc correlators directly in the quiver diagrams.

We easily recover the Nf = Nc−1 constraint from such a counting of fermionic zero modes.

We also apply our techniques to the case of USp(2Nc) SQCD with Nf flavours and

again obtain the known field theory result for the dynamically generated superpotential [28].

We comment also on the slightly more involved SO(Nc) case [29], which, in principle, is

also amenable to our methods.

This paper is organised as follows: In section 2 we first briefly recall the main results

of [21], which provide a recipe of how to compute contributions to the superpotential by

E2-brane instantons in a conformal field theory framework. In addition we derive some

new results on the generalisation of this framework to E2-instantons carrying extra bosonic

zero modes. Moreover, we make a concrete proposal relating the one-loop determinants

for the fluctuations around the instanton to one-loop gauge threshold corrections. Then

we specify which E2-instantons can be related to field theory gauge instantons in a certain

field theory limit of string theory. That means, we locally engineer a brane set-up which

corresponds to SQCD. In section 3 we compute the relevant disc amplitudes of the various

boundary changing operators involving both the matter and the instanton zero modes.

In section 4 we explicitly carry out the instanton zero mode integration, which turns out

to be non-trivial, and eventually in the field theory limit we indeed arrive at the ADS

superpotential. In section 5 this result is generalised to supersymmetric USp(2Nc) gauge

theory with Nf flavours and in section 6 we give our conclusions.
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2. E2-instantons in type II D-brane models

Let us review and slightly extend the formalism developed in [21] for the computation of

instanton contributions to the superpotential of Type IIA orientifolds with intersecting

D6-branes and E2-instantons wrapping compact three-cycles of the internal Calabi-Yau

geometry. We could also work with the possible T-dual Type IIB configurations, but in

order to have a clear geometric picture of the arising open string zero modes we choose

the Type IIA framework. We first discuss a compact set-up and then, as usual for string

engineering of field theories, take a decoupling limit to eventually arrive at local geometries

comprising all the information relevant for the field theory. For the techniques of model

building with intersecting brane worlds in general, see for instance [30 – 32].

2.1 Instanton generated type IIA superpotential

Assume we have a Type IIA orientifold with O6-planes and intersecting D6-branes preserv-

ing N = 1 supersymmetry in four dimensions, i.e. the D6-branes wrap special Lagrangian

(sLag) three-cycles Πa of the underlying Calabi-Yau manifold, all preserving the same

supersymmetry.

Space-time instantons are given also by D-branes, which in this case are Euclidean

E2-branes wrapping three-cycles Ξ in the Calabi-Yau, so that they are point-like in four-

dimensional Minkowski space. Such instantons can contribute to the four-dimensional

superpotential, if they preserve half of the N = 1 supersymmetry, which means they also

wrap sLag three-cycles. This guarantees that there are at least the four translational zero

modes xµ and two fermionic zero modes θi arising from the two broken supersymmetries.

If the instanton is not invariant under the orientifold projection there are another two

fermionic zero modes θi, as the instanton breaks four of the eight supercharges in the

bulk [33]. We also require that there do not arise any further zero modes from E2-E2 and

E2-E2’ open strings, so that in particular the three-cycle Ξ should be rigid, i.e. b1(Ξ) = 0.

Therefore, considering an E2-instanton in an intersecting brane configuration, addi-

tional zero modes can only arise from the intersection of the instanton Ξ with D6-branes

Πa:

• At any rate, there are Na [Ξ∩Πa]
+ chiral fermionic zero modes λa,I and Na [Ξ∩Πa]

−

anti-chiral ones, λ̃a,J .2

• At a smooth point in the CY moduli space, in general there will be no bosonic zero

modes originating form the instanton. However, if the instanton lies right on top of a

D6-brane one gets 4Na bosonic zero modes. Let us organize them into two complex

modes bα with α = 1, 2.

As we will see, for Ξ = Πa there can appear extra conditions on the zero modes arising from

the flatness conditions for the effective zero-dimensional gauge theory on the E2-instanton.

In this case the above numbers only give the unrestricted number of zero modes.

2Here we introduced the physical intersection number between two branes Πa ∩Πb, which is the sum of

positive [Πa ∩ Πb]
+ and negative [Πa ∩ Πb]

− intersections.
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In [27, 21] it was argued that each E2-D6 zero mode carries an extra normalisation

factor of
√

gs so that contributions to the superpotential can only arise from CFT disc and

one-loop diagrams involving E2 as a boundary. Here the disc contains precisely two zero

mode insertions and the 1-loop diagram none. For details we refer the reader to [21], here

we only recall the final result.

For its presentation it is useful to introduce the short-hand notation

Φ̂ak,bk
[~xk] = Φak,xk,1

· Φxk,1,xk,2
· Φxk,2,xk,3

· . . . · Φxk,n−1,xk,n
· Φxk,n(k),bk

(2.1)

for the chain-product of open string vertex operators. We define Φ̂ak ,bk
[~0] = Φak ,bk

. The

single E2-instanton contribution to the superpotential can be determined by evaluating the

following zero mode integral over disc and 1-loop open string CFT amplitudes

SW =
1

ℓ3
s

∫
d4x d2θ

∑

conf.

∏
I dλI

∏
J dλ̃J

∏2
α=1

∏
i dbα,i dbα,i

× δ(λ, λ̃, bα, bα) × exp
(
〈1〉1-loop

)
× exp

(
〈1〉disc

)

× exp

(
∑

k

〈〈Φak ,bk
[~xk]〉〉disc

λk
eλk

)
× exp

(
∑

l

〈〈Φal,bl
[~xk]〉〉disc

bα,lbα,l

)
,

(2.2)

where we work in the convention that all fields carry no scaling dimension and the sum is

over all possible vertex operator insertions. Note that in this formula the θi zero modes

have been integrated over leading to δ-functions representing the fermionic ADHM con-

straints [34], as will be explained later on. There are further δ-functions involving only

bosonic zero modes. These incorporate the bosonic ADHM constraints or, in more physical

terms, the F-term and D-term constraints from the effective theory on the E2-brane. Since

we will not attach any charged matter fields to the one-loop diagrams, compared to [21],

we left out this term in (2.2). The prefactor ℓ−3
s is chosen for dimensional reasons and is

so far only determined up to numerical factors. (We will come back to such normalisation

issues later.) The vacuum disc amplitude is given by

〈1〉disc = −Sinst = − 1

gs

Vinst

ℓ3
s

= − 8π2

g2
YM

, (2.3)

where the four-dimensional Yang-Mills gauge coupling is meant to be for the gauge theory

on a stack of D6-branes wrapping the same internal three-cycle as the instanton. As

already mentioned, in [21] the superpotential was given for the case without any additional

charged bosonic zero modes bα, bα. Since they also carry the extra normalisation factor
√

gs,

precisely two of them can be attached to a disc diagram. Moreover, since they commute

the whole exponential term appears in the superpotential (2.2).

The one-loop contributions are annulus diagrams for open strings with one boundary

on the E2-instanton and the other boundary on the various D6-branes

〈1〉1-loop =
∑

a

[
Z ′A(E2,D6a) + Z ′A(E2,D6′a)

]
+ Z ′M (E2,O6) . (2.4)

Here Z ′ means that we only sum over the massive open string states in the loop amplitude,

as the zero modes are taken care of explicitly. Without soaking up these zero modes, one
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clearly would encounter divergences from integrating out bosonic zero modes and zeros

from integrating out fermionic zero modes. We have provided the formula for an orientifold

model on a compact Calabi-Yau manifold. For the local engineering of SQCD done later

in this paper, we do not really have to take the orientifold planes and the image branes

into account, so that the annulus amplitudes with the image branes and the Möbius strip

amplitudes are absent.

The last ingredients to compute the rhs of equation (2.2) are the disc diagrams with

insertion of matter fields Φa,b and fermionic or bosonic zero modes. In the case of inserting

fermionic zero modes λ and λ̃, the explicit form of the disc diagram is the following

〈〈Φak,bk
[~xk]〉〉disc

λk
eλk

=
∫

dz1 . . . dzn+2

V1,2,n+2
〈Vλk

(z1)VΦak,xk1
(z2) . . . VΦxkn

,bk
(zn+1)Veλk

(zn+2)〉 . (2.5)

For the disc diagram with insertion of bosonic zero modes bα and bα, one simply replaces

Vλk
(z1) by Vbα,k

(z1) and Veλk
(zn+2) by Vbα,k

(zn+2). In equation (2.5) the symbol Vijk denotes

the measure

Vijk =
dzi dzj dzk

(zi − zj)(zi − zk)(zj − zk)
(2.6)

with zi → ∞, zj = 1 and zk = 0. The remaining z’s are to be ordered as 1 ≥ z3 ≥ z4 ≥
. . . ≥ zn+1 ≥ 0 and integrated over the interval [0, 1].

To summarise, the entire computation of the single instanton contribution to the su-

perpotential boils down to the following steps:

• Determining the bosonic and fermionic instanton zero modes from all possible open

string sectors.

• Finding the E2-flatness contraints for instantons sitting on top of D6-branes and

implementing them as delta-functions in (2.2).

• The evaluation of certain disc amplitudes with insertion of precisely two instanton

zero modes and an arbitrary number of matter fields (see equation (2.5)).

• The computation of vacuum annulus and Möbius strip amplitudes as indicated in

equation (2.4).

• Performing the integration over bosonic and fermionic zero modes.

As expected, the stringy superpotential is entirely given in a semi-classical approximation.

We will see that in the field theory limit, only the leading order terms of the disc and

one-loop amplitudes survive, considerably simplifying formula (2.2).

2.2 One-loop amplitudes

So far we have not really specified what we actually mean by the vacuum one-loop am-

plitudes, i.e. the annulus amplitudes for open strings between the E2-instanton and the

– 6 –
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Figure 1: Relation between instantonic one-loop amplitudes and corresponding gauge threshold

corrections.

various D6-branes. To our knowledge such amplitudes have not been computed yet. So

far, only overlaps of two non-instantonic or two instantonic [35, 8, 36] D-branes have been

considered in the literature.3

In order to get an idea beforehand what they should be, we first note that the diver-

gence from the massless open string excitations should be identified with the divergence

from integrating out naively the instanton zero modes, i.e. without soaking them up in disc

diagrams involving other space-time fields. Next we observe that for the case in which we

place an E2a-instanton on top of a D6b-brane, the disc instanton action

Sinst =
8π2

g2
YM

(2.7)

is equal to the tree level gauge coupling on D6b. This gauge coupling receives one-loop

threshold corrections from open strings between the brane D6a and the branes D6b of the

form [38]

8π2

g2
a(µ)

=
8π2

g2
a(µ0)

+
∑

b

ba
[ab] ln

(
µ

µ0

)
+ ∆a

[ab], (2.8)

where ba
[ab] is the field theory one-loop beta function coefficient and comes from massless

states of the D6a-D6b open string sector running in the loop. To make the picture consistent,

it should better be that the one-loop contributions ZA(E2a,D6b) are identical to the one-

loop gauge threshold corrections T a(D6a,D6b). More concretely, the sum of the three even

spin structures will be shown to yield the one-loop correction to the gauge coupling, and the

odd spin structure is expected to give the one-loop correction to the θ-angle. We therefore

propose that diagrammatically we have the intriguing relation shown in figure 1.

To prove this statement let us first compute the instantonic one-loop partition func-

tions ZA(E2a,D6b). These cannot be expressed in light cone gauge, but including the

contributions from the ghosts can, for the even spin structures, be written as

ZA(E2a,D6b) = −
∫ ∞

0

dt

t

∑

α,β 6=( 1
2
, 1
2
)

(−1)2(α+β)
Θ2

[α
β

]
(it, it/2)

Θ2
[1/2
1/2

]
(it, it/2)

η3(it)

Θ
[α
β

]
(it, 0)

ACY
ab

[α
β

]
(2.9)

3Just when the present paper was readied for submission, we received [37], where these E2-D6 partition

functions were computed for intersecting branes on T
6.

– 7 –



J
H
E
P
0
4
(
2
0
0
7
)
0
7
6

with

Θ
[α
β

]
(τ, z) =

∑

n∈Z

eiπτ(n+α)2 e2πi(n+α)(z+β) . (2.10)

Moreover, ACY
ab

[α
β

]
denotes the internal open string partition function with the respective

spin-structure for open strings between branes wrapping the three-cycles Πa and Πb. Using

the relations



Θ
[α
β

]
(it, z)Θ′

[1/2
1/2

]
(it, 0)

Θ
[1/2
1/2

]
(it, z)Θ

[α
β

]
(it, 0)




2

=
Θ′′

[α
β

]
(it, 0)

Θ
[α
β

]
(it, 0)

− ∂2
z log Θ

[1/2
1/2

]
(it, z) (2.11)

where the derivatives are taken with respect to the variable z, and −2πη3(it) =

Θ′
[1/2
1/2

]
(it, 0), after a few standard manipulations we can bring the partition function into

the form

ZA(E2a,D6b) =

∫ ∞

0

dt

t

∑

α,β 6=( 1
2
, 1
2
)

(−1)2(α+β)
Γ
[α
β

]
(it)

η3(it)
ACY

ab

[α
β

]
. (2.12)

The Γ’s are nothing else than the derivatives of Θ-functions with respect to the variable t

Γ
[α
β

]
(it) = − 1

π

∂

∂t
Θ

[α
β

]
(it, 0) =

∑

n∈Z

(n + α)2 e−πt(n+α)2 e2πi(n+α)β . (2.13)

The threshold corrections for intersecting D6-branes on a torus T
6 have been explicitly

computed in [38]. Their result is easily generalised to the case of intersecting D6-branes

on a general Calabi-Yau space and precisely gives (2.12).

Now, divergences in (2.12) can arise from massless states. As we mentioned, these

divergences are precisely related to the one-loop beta-function coefficient ba
[ab] for the N = 1

supersymmetric massless states between the branes D6a and D6b. This one-loop divergence

is roughly

exp

(
ba
[ab]

∫ t

t0

dt

t
q0

)
=

(
t

t0

)ba
[ab]

=

(
µ0

µ

)ba
[ab]

, (2.14)

where we have defined the mass scales µ = 1/t and µ0 = 1/t0. The beta function coefficient

ba
[ab] has contributions from the NS- and the R-sector in (2.12)

ba
[ab] =

(
ba
[ab]

)
NS

−
(
ba
[ab]

)
R

. (2.15)

Identifying, as proposed, T a(D6a,D6b) with ZA(E2a,D6b), these divergences should come

from integrating out bosonic and fermionic instanton zero-modes. Taking into account that

a mass term in the action for a boson reads LB
mass = µ2b b and for a fermion LF

mass = µ λ λ̃,

the number of bosonic and fermionic zero modes should be identified with

nB =
(
ba
[ab]

)
NS

, nF = 2
(
ba
[ab]

)
R

. (2.16)

Let us verify that this indeed gives the correct number of instanton zero modes for the

configurations relevant in the following:

– 8 –
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• a 6= b: Let us discuss the case that we have an intersection giving rise to one pair of

chiral superfields between the D6a and a stack of Nb D6b-branes. In the NS sector,

for the massless states the internal sector carries h = 1/2 and the external one only

the ground state with h = 0. However, in the threshold corrections this latter n = 0

state does not survive and therefore all states from the NS-sector are massive and

(ba
[ab])NS = 0. In the R-sector with α = 1/2, the (n + α)2 factor implies that we

get (ba
[ab])R = Nb, leading to the correct beta-function coefficient for Nb generations

of quarks. The number of fermionic zero modes for the E2a instanton and the Nb

D6-branes is therefore

nB = 0 , nF = 2Nb . (2.17)

• a = b: Now let us discuss the case that we put the instanton E2a on top of the stack

of D6a-branes. If the D6a brane is rigid, we get precisely one N = 1 vector superfield

in the corresponding D6a-D6a open string sector. These are the states with n = ±1

in the external sector. Therefore, in this case we find (ba
[aa])NS = 4Na in (2.12). The

fermionic contribution comes out as (ba
[aa])R = Na, giving the correct beta-function

coefficient for one N = 1 vector field ba
[aa] = 3Na. The number of instanton zero

modes therefore is as expected

nB = 4Na , nF = 2Na . (2.18)

We see that in these two examples indeed the E2-D6 partition functions are identical

to the gauge threshold correction in the corresponding D6-D6 sector.4

2.3 Engineering of field theory instantons

The formalism presented so far deals with truly string instantons for compact Type IIA ori-

entifolds. In the following we would like to extract the instanton amplitudes for field theory

instantons in supersymmetric Yang-Mills theories. This means that we have to decouple

gravity and higher order string corrections. Field theory instantons in a supersymmetric

Yang-Mills theory contain a factor exp(−1/g2
YM), which immediately implies that such ef-

fects can only arise from E2-branes sitting right on top of the D6-brane supporting the

Yang-Mills theory.

To be concrete, let us engineer, in the spirit of [39, 40], SU(Nc) supersymmetric Yang-

Mills theory with Nf non-chiral flavours. This theory is generally called SQCD. First, we

take a stack of Nc D6-branes wrapping a three-cycle Πc of some Calabi-Yau manifold. In

order to just get N = 1 super Yang-Mills theory on this brane, we assume that the three-

cycle is special Lagrangian and rigid, i.e. that the number of its deformations satisfies

b1(Πc) = 0. In D-brane models, fundamental representations of matter fields can only

4Note that the superpotential in the Wilsonian sense is a holomorphic quantity but the stringy gauge

threshold corrections in eq. (2.12) generically are not. Therefore, only the Wilsonian holomorphic part of

the threshold corrections enters the instanton generated superpotential.
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Figure 2: Local SQCD brane configuration with resulting zero modes.

come from bi-fundamental representations arising from the intersection with a stack of Nf

flavour branes. These flavour branes wrap a different sLag three-cycle Πf . As we will

discuss in subsection 2.4, we would like the U(Nf ) gauge dynamics on these branes to

decouple.

Since we want non-chiral matter,5 we assume that the intersection number of Πc and

Πf is non-chiral, which means

[Πc ∩ Πf ]± = 1 . (2.19)

With this particle content, all cubic gauge anomalies vanish so that we can assume that

these two D-branes do not have any other non-trivial intersection with the other poten-

tially present D6-branes in the model. Generically the gauge boson in the U(1) ⊂ U(Nc)

subgroup acquires a mass due to GS mixing terms with the axions.

As we mentioned above, in string theory, the (zero size) Yang-Mills instanton in SU(Nc)

is given by a Euclidean E2-brane wrapping the same three-cycle Πc as the colour branes

and being point-like in four-dimensional Minkowski space. The final local D6-E2 brane

configuration and the resulting zero modes are shown in the extended quiver diagram in

figure 2.

In this local model, there are three open string sectors involving the instanton. We

analyse them in turn.

E2-E2: since the E2-instanton wraps the same rigid three-cycle as the D6c brane, the

massless E2-E2 modes are the four positions in Minkowski space xµ with µ = 0, . . . , 3 and

four massless fermions θi, θi, i = 1, 2. The latter correspond to the breaking of four of the

eight supercharges preserved in type IIA theory on a Calabi-Yau manifold. Two of these,

namely the θi, are related to the two supersymmetries preserved by the D6-branes, but

5In toroidal T
2 × T

2 × T
2 compactifications with intersecting branes this can be achieved for instance

by choosing intersection angles φ1 = 0 and φ2 = −φ3 between Πc and Πf .
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broken by the instanton, and, together with the four bosons xµ contribute the measure

∫
d4x d2θ (2.20)

to the instanton amplitude. Integrating the other two zero modes θi leads to the fermionic

ADHM [34] constraints [27, 41] as we will explain in the following.

E2-D6c: since the E2-instanton and the D6c branes wrap the same three-cycle, they share

three directions in the internal space and have N-D boundary conditions along Minkowski

space. Therefore, the ground state energy in both the NS- and the R-sector is ENS,R = 0

and one gets Nc complete hypermultiplets of massless modes. These are the 4Nc bosonic

zero modes already seen in eq. (2.18).

However, not all of these bosonic zero modes are independent. In fact as analysed in

detail in [27], the effective zero-dimensional supersymmetric gauge theory on the E2-brane

gives rise to D-term and F-term constraints, which in the field theory limit are nothing else

than the well known ADHM [34] constraints [42]. If we rename the complex bosonic zero

modes bα,i as b1,i = bi and b2,i = b̃i, these constraints become [43]

Nc∑

c=1

[
bc b̃c + bc b̃c

]
= 0 ,

Nc∑

c=1

[
bc b̃c − bc b̃c

]
= 0 ,

Nc∑

c=1

[
bc bc − b̃c b̃c

]
= 0 . (2.21)

The first two can be interpreted as the F-term constraints Re bcb̃c = 0 and Im bcb̃c = 0,

the last one as the D-term constraint
∑Nc

c=1 |bc|2 − |̃bc|2 = 0.

As seen in (2.18), there are only 2Nc fermionic zero modes. However, in [27] it was

shown in the T-dual picture that they have to satisfy the ADHM constraints

Nc∑

c=1

[
β̃c bc + βc b̃c

]
= 0 and

Nc∑

c=1

[
β̃c b̃c − βc bc

]
= 0 . (2.22)

These constraints can be recovered in the present setup by performing the integration over

the aforementioned zero modes θi explicitly [27, 41]. More concretely, one can absorb the

instanton zero modes with terms like β̃c bc θ and integrate over θ to arrive at a δ-function

realisation of (2.22).

All these constraints, i.e. equations (2.21) and (2.22), have to be implemented in the

general formula for the superpotential (2.2). We will not perform the θ integration ex-

plicitely but realise all the constraints by the means of delta functions. This ensures the

gauge invariance of the integration measure.

E2-D6f : in this sector, the ground state energy in the NS sector is positive, so that there

are no bosonic zero modes. One only gets Nf pairs of non-chiral λf , λ̃f zero modes from

eq. (2.17) yielding the measure

∫ Nf∏

f=1

dλf dλ̃f . (2.23)
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To summarise, the total integration measure for the computation of the E2-instanton

generated superpotential (2.2) reads

∫
d4x d2θ

Nc∏

c=1

dbc dbc db̃c db̃cdβc dβc

Nf∏

f=1

dλf dλ̃f δF (β̃c bc + βc b̃c)

δF (β̃c b̃c − βc bc) δB(bc b̃c + bc b̃c) δB(bc b̃c − bc b̃c) δB(bc bc − b̃c b̃c) ,

(2.24)

where in the two fermionic and three bosonic ADHM constraints summation over the colour

index is understood. It is rather amusing that the open string zero modes precisely give the

flat ADHM measure with the quadratic constraints arising from the F-term and D-term

constraints for the effective gauge theory on the E2-instanton.

2.4 The field theory limit

Now let us discuss the aforementioned field theory limit in more detail. We have a stack

of colour D6-branes wrapping a three-cycle of size

vc =
Vc

ℓ3
s

∼= R3
c

(α′)
3
2

= r3
c (2.25)

in string units. The flavour branes wrap a different cycle with volume vf = rc r2
T , where T

stands for transversal.6 The volume of the entire CY in string units is vCY
∼= r3

c r3
T and we

have two dimensionless scales rc, rT and one length scale
√

α′.

The effective four-dimensional couplings in our configuration are the Yang-Mills cou-

pling of the colour branes

4π

g2
c

=
1

gs

Vc

ℓ3
s

∼= r3
c

gs
, (2.26)

the Yang-Mills coupling of the flavour branes

4π

g2
f

=
1

gs

Vf

ℓ3
s

∼= rc r2
T

gs
(2.27)

and the Planck mass

M2
Pl

∼= 1

(2πα′) g2
s

r3
c r3

T . (2.28)

Clearly, the gauge coupling of the colour branes should be fixed at finite gc. In order for

the Dirac-Born-Infeld theory on these branes to reduce to the Yang-Mills Lagrangian we

have to suppress all higher α′ corrections, which means we have to take the α′ → 0 limit.

On the other hand the gauge theory on the flavour branes should decouple from the

dynamics, which means that gf → 0 or, in other words, that the transverse space of volume

vT = r3
T should decompactify, i.e. rT → ∞. In this limit however, also MPl → ∞ so that

gravity decouples.

6We are thinking here of the situation on the six-torus, where the flavour- and the colour-cycle share

one common direction.
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In this limit the world-sheet instantons, giving stringy corrections to the disc correla-

tors, scale like

exp

(
− J

α′

)
≃ exp(−r2

T ) → 0 , (2.29)

so that only trivial instantons of zero size contribute to the field theory amplitude. More-

over, in the one-loop Pfaffian all the massive string modes decouple in the α′ → 0 limit.

The same holds for potential Kaluza-Klein and winding modes in the various E2-D6 brane

sectors, as their masses scale like

M2
KK =

1

R2
c

≃ 1

α′r2
c

→ ∞ and M2
wind =

R2
f

α′2
≃ r2

T

α′
→ ∞ . (2.30)

The gauge coupling of the effective zero-dimensional gauge theory on the E2-brane reads

4π

g2
E

=
ℓ4
s

gs

V3

ℓ3
s

≃ α′2 r3
c

gs
→ 0 , (2.31)

i.e. naively, in the field theory limit the effective theory on the instanton decouples. How-

ever, this theory should provide the ADHM constraints, so that it should better not de-

couple completely. In fact, as shown in [27], the operators up to dimension four in the

E2-action survive precisely due to extra factor of
√

gE ≃ √
gs in the vertex operators for

the E2-D6 modes.

To summarise, in the field theory limit,

α′ → 0 , vT → ∞ , vc = finite , (2.32)

the complete string theory instanton amplitude simplifies dramatically and only the leading

order world-sheet disc instantons and massless states in the 1-loop amplitudes contribute.

Moreover, all higher order α′ corrections in the matter fields are suppressed as well and

the effective theory on the E2-instanton provides the ADHM constraints for the massless

E2-D6c open string modes.

3. Disc amplitudes

In order to evaluate the superpotential (2.2) for our locally engineered configuration of

intersecting D6-branes, it essentially remains to compute the appearing disc diagrams with

two fermionic respectively bosonic zero modes attached. Looking at the extended quiver

diagram in figure 2, one realises that, due to the non-chirality of SQCD, numerous insertions

of chains of matter fields Φ and Φ̃ are possible. However, in the field theory limit only the

leading order term with the minimal number of Φ and Φ̃ insertions survives.

In this section we compute these relevant one- and two-point CFT disc amplitudes

with two fermionic/bosonic zero modes in the background. To eventually compare our

result to field theory, we first have to ensure that the string amplitudes and the vertex

operators are normalised correctly. Here we will explicitly take care of factors of gs, α′ and

vc. As we will see at the end of the computation, additional (often convention dependent)

numerical factors can always be absorbed into the definition of the dynamically generated

scale Λ and are therefore not taken care of explicitly.
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branes D6c D6f D6c,D6f E2 E2,D6c E2,D6f E2,D6c,D6f

C 2πvc

gsℓ4s

2πvf

gsℓ4s

2π
gsℓ4s

2πvc

gs

2πvc

gs

2π
gs

2π
gs

Table 1: Disc normalisation factors C for the various combinations of possible boundaries.

3.1 Normalisation

In general, conformal field theory amplitudes carry a normalisation factor C, i.e.

〈〈
K∏

k=1

Φk 〉〉 = C

∫
dz1 . . . dzK

V1,2,K
〈VΦ1(z1)VΦ2(z2) . . . VΦK

(zK) 〉 , (3.1)

where C depends on the boundaries of the disc. If there is only a single boundary brane

Dp, then C is nothing else than the tension of the Dp-brane

C =
µp

gs
=

2π

gs ℓp+1
s

. (3.2)

However, if the disc contains more boundaries the normalisation is given by the common

sub-locus of all boundaries. For the relevant branes D6c, D6f and E2 the resulting nor-

malisation factors are shown in table 1.

Having fixed the normalisation factors of the disc, we have to take care of the nor-

malisation of the vertex operators. These can be fixed by comparison with the standard

normalisation in field theory. Let us first consider the vertex operators for the gauge boson

in the (−1)-ghost picture

V
(−1)
A (z) = Aµ e−ϕ(z) ψµ(z) eip·X(z) . (3.3)

In this normalisation the space-time field Aµ is dimensionless. The standard field theory

normalisation is then obtained by scaling Aµ = (2πα′)
1
2 Aµ

phys. The Yang-Mills gauge

coupling at the string scale is given by

1

g2
YM

=
1

2
CD6c(2πα′)2. (3.4)

In order not to overload the notation with too many scaling factors, in the following we

first normalise the vertex operators such that the space-time fields do not carry any scaling

dimension. Only in the very end we move to physical fields by introducing appropriate

(2πα′)∆/2 factors, where ∆ denotes the four-dimensional scaling dimension of the field.

Next we have to normalise the matter fields localised on the intersection of the two

D6-branes. We want the kinetic term to be normalised as in the work by Affleck, Dine and

Seiberg

Smatter =

∫
dx4 1

g2
YM

∂µΦ ∂µΦ . (3.5)

Since now the disc normalisation does not contain the volume vc, we have to put this factor

in the normalisation of the vertex operators leading to

V
(−1)
Φ (z) =

√
vc Φ e−ϕ(z) Σcf

1/2(z) eip·X(z) , (3.6)
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where Σcf
1/2 is an internal twist operator of conformal dimension h = 1/2.

As explained in section 2, for the instanton zero modes not to decouple in the field

theory limit, their vertex operators must contain extra factors of
√

gs. This leads to the

following form of the vertex operator for the E2-D6c bosonic zero modes bc

V
(−1)
bc

(z) =

√
gs

2πvc
bc e−ϕ(z)

3∏

µ=0

σµ
1
16

(z)
3∏

ν=0

sν
1
16

(z) , (3.7)

where the σµ
1
16

(z) denote the bosonic twist fields of conformal dimension h = 1/16 and

sν
1
16

(z) the fermionic ones of the same conformal dimension. Similarly, for the fermionic

instanton zero modes in this sector we write

V
(−1/2)
βc

(z) =

√
gs

2πvc
βc e−

ϕ(z)
2

3∏

µ=0

σµ
1
16

(z) Σc
3/8(z) . (3.8)

Taking into account the different disc normalisations for the charged matter fermionic zero

modes, the vertex operator is

V
(−1/2)
λf

(z) =

√
gs

2π
λf e−

ϕ(z)
2

3∏

µ=0

σµ
1
16

(z) Σf
3/8(z) . (3.9)

In the fermionic vertex operators, Σ3/8 denote appropriate Ramond fields, whose form

depends on the concrete CFT describing of the internal Calabi-Yau manifold.

3.2 Three-point amplitudes

As we mentioned earlier, in the field theory limit (2.32) the computation of the single

instanton generated superpotential (2.2) simplifies considerably. In particular, for our setup

shown in figure 2 we are left with only two disc diagrams with insertion of two fermionic

zero modes from the set βc, β̃c, λf , λ̃f . See for instance [44 – 48] for the conformal field

theory computation of disc amplitudes for intersecting D-brane models. The appropriate

combination of these zero modes can be obtained by looking at the extended quiver diagram

in figure 2. However, because of U(1) charge cancellation on the world-sheet, the fermionic

zero modes couple to anti-holomorphic matter fields. The explicit form of the first disc

correlator is

〈〈 Φ̃cf 〉〉disc
βc

eλf
=

2π

gs

∫
dz1 dz2 dz3

V123
〈V (−1/2)

βc
(z1)V

(−1)

eΦcf

(z2)V
(−1/2)

eλf

(z3)〉 . (3.10)

The second disc correlator is 〈〈Φfc 〉〉disc
λf

eβc
and has a form analogous to the first one.

The evaluation of these two disc correlators is easily achieved using the following three-

point functions

〈σµ
1
16

(z1)σν
1
16

(z3)〉 =
δµν

(z1 − z3)
1
8

,

〈e−
ϕ(z1)

2 e−ϕ(z2) e−
ϕ(z3)

2 〉 =
1

(z1 − z2)
1
2 (z1 − z3)

1
4 (z2 − z3)

1
2

,

〈Σc
3
8
(z1) Σ̃

cf
1
2

(z2)Σf
3
8

(z3)〉 =
1

(z1 − z2)
1
2 (z1 − z3)

1
4 (z2 − z3)

1
2

,

(3.11)
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and we directly obtain the effective term in the instanton action

Lferm = βc Φ̃cf λ̃f + λf Φfcβ̃c . (3.12)

Note that this is the same Lagrangian as appears in the field theory calculation [15].

3.3 Four-point amplitude

In the field theory limit we essentially have to compute one disc amplitude with insertion

of two bosonic zero modes. Looking again at the extended quiver in figure 2, we are led

to insert the bosonic zero modes {b, b} and {b̃, b̃}.7 Because of U(1) charge cancellation on

the world-sheet, the matter fields can only be paired as Φ Φ and as Φ̃ Φ̃. The explicit form

of the CFT four-point function is the following

〈〈ΦcfΦfc′ 〉〉disc
bc bc′

=
2π

gs

∫
dz1 dz2 dz3 dz4

V124
〈V (−1)

bc
(z1)V

(0)
Φcf

(z2)V
(0)

Φfc′
(z3)V

(−1)

bc′
(z4)〉 , (3.13)

and similarly for {b̃, b̃} and Φ̃ Φ̃. The vertex operators for the bosons of the matter super-

fields in the (0)-ghost picture are given by

V
(0)
Φ (z) =

√
vc Φ

(
Σ1(z) + i(p · ψ)Σ1/2(z)

)
eip·X(z) , (3.14)

where Σ1(z) = {G−1/2,Σ1/2(z)} is an internal operator of conformal dimension h = 1. The

four-point function in the ghost sector and the internal sector simply reduce to two-point

functions

〈e−ϕ(z1) e−ϕ(z4)〉 =
1

(z1 − z4)
, 〈sµ

1
16

(z1) sν
1
16

(z4)〉 =
δµν

(z1 − z4)
1
8

,

〈Σ1/2(z2)Σ1/2(z3)〉 =
1

(z2 − z3)
, 〈Σ1(z2)Σ1(z3)〉 =

1

(z2 − z3)2
.

(3.15)

What remains to be computed are the four-point functions

〈σµ
1
16

(∞) eipµXµ(z2) e−ipµXµ(z3) σµ
1
16

(0)〉 (3.16)

and

〈sµ
1
16

(∞)ψµ(z2)ψµ(z3) sµ
1
16

(0)〉 (3.17)

(no sum over µ). However, these functions are nothing else than the respective two-point

functions in the Z2 twisted sector, which can be obtained from

〈Xµ(z)Xν(w)〉T = −ηµν ln

[
z − w

(
√

z +
√

w)2

]
(3.18)

7Naively, it is also possible to pair the zero modes as {b,eb} and {eb, b}. However, let us for the moment go

back to the notation bα,c from the beginning and attach labels α also to the spin fields sα
1

16

of equation (3.15).

Equation (A.19) in [27] tells us that 〈sα
1

16

(z)sβ
1

16

(w)〉 ∼ − ǫαβ

(z−w)1/2
and therefore only the insertion of

{b1,c, b2,c} or {b2,c, b1,c} into the disc amplitude gives a non-vanishing result. Converting this back into our

notation, this is precisely the choice we mentioned.
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Figure 3: Four-point massless string exchange and four-point vertex interaction.

and

〈ψµ(z)ψν(w)〉T =
ηµν

2

√
z
w +

√
w
z

z − w
. (3.19)

Combining all these terms and substituting x2 = z3, the four-point function (3.13) can be

expressed as

〈〈ΦcfΦfc′ 〉〉disc
bc bc′

= bc Φcf Φfc′ bc′

∫ 1

0
dx

(1 + x)p
2−2

(1 − x)p2+2

(
2x + p2 (x2 + 1)

)
. (3.20)

The integral is elementary and one finally obtains

〈〈ΦΦ 〉〉disc
bc bc

= bc Φ Φ bc

[
2p2−1 lim

x→1
(1 − x)−p2−1 − 1

2

]
. (3.21)

This four-point string amplitude corresponds to the two field theory diagrams shown in

figure 3. The first term, corresponding to the first diagram, is divergent for p2 → 0, i.e.

on-shell, and reflects the singularity due to the exchange of massless states in the four-

point amplitude. The second term corresponds to the second diagram and is momentum-

independent. Therefore, it should be interpreted as the local four-point interaction.

In summary, taking also into account the insertion of the bosonic zero modes {b̃, b̃}
and the matter field pairings Φ̃ Φ̃, we obtain the effective term in the instanton action

originating from bosonic zero modes as

Lbos = 1
2 bc

(
Φcf Φfc′ + Φ̃cf Φ̃fc′

)
bc′ + 1

2 b̃c

(
Φcf Φfc′ + Φ̃cf Φ̃fc′

)
b̃c′ . (3.22)

This again agrees with the field theory Lagrangian [15].

4. The Affleck-Dine-Seiberg superpotential

Having engineered a local intersecting D6-brane model giving rise to SU(Nc) super Yang-

Mills theory with Nf non-chiral flavours and having determined the leading order disc
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diagrams, we now come to the evaluation of the zero mode integrals in (2.2) to see whether

one can really recover the Affleck-Dine-Seiberg (ADS) superpotential

W =
Λ3Nc−Nf

det(Mff ′)
. (4.1)

Note that here the matter fields carry their canonical scaling dimension ∆ = 1. The

dynamically generated scale Λ is defined as

(
Λ

µ

)3Nc−Nf

= exp

(
− 8π2

g2
c (µ)

)
. (4.2)

Performing the corresponding single E2-instanton computation in the local D-brane model,

we are aiming to explicitly derive the ADS superpotential in the field theory limit. Since we

think that our methods are applicable to more general instanton computations, we provide

the actual evaluation of the zero mode integrals in quite some detail.

4.1 Fermionic zero mode integration

In this subsection we compute to lowest order in α′ the contribution of the fermionic zero

modes to the E2-instanton generated superpotential (2.2). The relevant disc diagrams have

been computed in section 3.2. However, since we will perform an integration over instanton

zero modes, we should replace the matter fields Φcf by their VEVs 〈Φcf 〉 and similarly for

Φ̃fc and their conjugates. Furthermore, we have to satisfy the D-term constraint for the

matter fields to ensure the supersymmetry of our setup so we can apply formula (2.2).

Specifically, the D-term constraint implies

〈Φcf 〉 = 〈Φ̃cf 〉 and 〈Φ̃cf 〉 = 〈Φcf 〉 . (4.3)

Using these relations, one can rewrite (3.12) to obtain the relevant three-point couplings

βc 〈Φcf 〉 λ̃f + λf 〈Φ̃fc〉β̃c (4.4)

where c = 1, . . . , Nc and f = 1, . . . , Nf . The sum over repeated indices is understood and

in the following we will omit the VEV brackets for ease of notation.

The next step is to implement the fermionic ADHM constraints (2.22) in terms of

delta-functions. For Grassmann-variables they read

δ
(
β̃c1 bc1 + βc2 b̃c2

)
δ
(
β̃c3

¯̃
bc3 − βc4 b̄c4

)
=

(
β̃c1 bc1 + βc2 b̃c2

) (
β̃c3

¯̃
bc3 − βc4 b̄c4

)
. (4.5)

Taking also into account the fermionic part of the integration measure (2.24), we arrive at

the following expression for the fermionic contribution to the superpotential

Iferm(Φ, Φ̃, b, b̃) =

∫ Nc∏

c=1

dβcdβ̃c

Nf∏

f=1

dλfdλ̃f

(
β̃c1bc1 b̃c2β̃c2 − β̃c1bc1bc2βc2

+βc1 b̃c1 b̃c2β̃c2 − βc1 b̃c1bc2βc2

)
exp

(
βcΦcf λ̃f + λf Φ̃fcβ̃c

)
. (4.6)
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Note the dependence not only on the matter fields but also on the bosonic zero modes b, b̃.

The fermionic modes β and β̃ in front of the exponent determine which part in the series

expansion is picked out by the integral. For instance, in the case of a prefactor β̃β only

(βcΦcf λ̃f )Nc−1 and (λf Φ̃fcβ̃c)
Nc−1 survive the dβ integration. This implies, however, that

the integral (4.6) can only be non-zero if and only if

Nf = Nc − 1 . (4.7)

One can check that for prefactors ββ and β̃ β̃ the complete fermionic integral vanishes, since

the number of modes λ is equal the number of modes λ̃. Therefore, we recovered nicely the

constraint of Affleck, Dine and Seiberg for the instanton generated ADS superpotential.

By differentiating under the integral sign, and using some of the formulae of ap-

pendix A.1, one finds that the final result for the fermionic zero mode integration is

Iferm(Φ, Φ̃, b, b̃) =

Nc∑

p,q=1

(−1)p+q
(
bpbq + b̃pb̃q

)
det

[
ΦΦ̃

∣∣
q,p

]
. (4.8)

Here, and in the following, Φ is the Nc × (Nc − 1) matrix with elements Φc,f and similarly

Φ̃ is an (Nc − 1) × Nc matrix. The symbol A|q,p denotes the matrix obtained from A by

deleting the q’th row and p’th column. The (q, p)’th element of a matrix A will be denoted

by Aq,p.

4.2 Bosonic zero mode integration

Let us now turn to the evaluation of the bosonic zero mode integrals in (2.24). The relevant

disc diagrams have been computed in section 3.3. Following the same reasoning as for the

three-point amplitudes, we replace the matter fields by their VEVs and use the D-term

constraint (4.3) to arrive at the four-point couplings

bc 〈Φcf 〉 〈Φ̃fc′〉 bc′ + b̃c 〈Φcf 〉 〈Φ̃fc′〉 b̃c′ . (4.9)

Note that in the following we will again omit the VEV brackets for ease of notation.

The ADHM constraints for the bosonic moduli space, or equivalently the D- and F-term

constraints for the E2, are given in equation (2.21). Again, these have to be implemented

as delta-functions in the integration measure (2.24). The explicit form of the bosonic part

reads

∫ Nc∏

c=1

dbc dbc db̃c db̃c δ
(
bcb̃c + b̃cbc

)
δ
(
ibcb̃c − ĩbcbc

)
δ
(
bcbc − b̃cb̃c

)

=

∫ Nc∏

c=1

dbc dbc db̃c db̃c

∫
dk1 exp

(
ik1(bcb̃c + b̃cbc)

)

×
∫

dk2 exp
(
−k2(bcb̃c − b̃cbc)

) ∫
dk3 exp

(
ik3(bcbc − b̃cb̃c)

)
.

(4.10)
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Finally, we combine (4.9), (4.10) and the bosonic fields from the fermionic integration (4.8)

into the bosonic integral

∫
d3k

∫ Nc∏

c=1

dbc db̃c dbc db̃c

(
bpbq + b̃pb̃q

)
exp

(
−

[
b

b̃

]T [
M(1) M(2)

M(3) M(4)

][
b

b̃

])
, (4.11)

where the b’s are vectors with the Nc entries bc and the M ’s are Nc × Nc matrices of the

following form

M(1) = −ΦΦ̃ + ǫ1− ik3 1 , M(2) = −ik1 1− k2 1 ,

M(3) = −ik1 1+ k2 1 , M(4) = −ΦΦ̃ + ǫ1+ ik3 1 .
(4.12)

Here were added an infinitesimal parameter ǫ > 0 in order to regularise the complex

Gaussian integrals (4.11). At the end of the computation we will take the ǫ → 0 limit.

Note that bosonic fields in front of the exponential can be written as

bpbq + b̃pb̃q = − ∂

∂M(1)p,q
− ∂

∂M(4)p,q
, (4.13)

where for instance the first derivative is with respect to the (p, q)’th element of the matrix

M(1). Then one can perform the Gaussian integrals in (4.11) to obtain

∫
d3k

(
− ∂

∂M(1)p,q
− ∂

∂M(4)p,q

)
det

([
M(1) M(2)

M(3) M(4)

])−1

(4.14)

=

∫
d3k

((
M−1

(1)

)
q,p

+
(
M−1

(4)

)
q,p

)
det

([
M(1) M(2)

M(3) M(4)

])−1

(4.15)

= − 2

∫
d3k

Nc∑

r=1

(
ΦΦ̃ − ǫ1)

q,r

((
ΦΦ̃ − ǫ1)2

+ k21)−1

r,p

det
[(

ΦΦ̃ − ǫ1)2
+ k2 1] . (4.16)

From line (4.14) to (4.15) we used formula (A.1) from the appendix. From (4.15) to

line (4.16) we used (A.2) and (A.3). Note that M−1
(1) stands for the upper-left block of the

block-matrix M−1, i.e. it is not the inverse of M(1).

At this point let us summarise the results of the fermionic and bosonic zero mode

integration so far. Combining equations (4.8) and (4.16) and going to spherical coordinates

we find the expression

Ibos(Φ, Φ̃) =

∫
d4x d2θ

∫ ∞

0
dk k2

×
Nc∑

p,q,r=1

(−1)p+q
det

[
ΦΦ̃

∣∣
q,p

] (
ΦΦ̃ − ǫ1)

q,r

((
ΦΦ̃ − ǫ1)2

+ k2 1)−1

r,p

det
[(

ΦΦ̃ − ǫ1)2
+ k2 1] . (4.17)

Note that so far still the combination ΦΦ̃ occurs, whereas eventually we have to get the

flavour matrix Φ̃Φ. In (4.17) there is a part which can be simplified using equations (A.4)
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and (A.5)

Nc∑

q=1

(−1)p+q det
[
ΦΦ̃

∣∣
q,p

]
ΦΦ̃q,r = det

[
ΦΦ̃

]
δp,r = 0 . (4.18)

The remaining part can be rewritten using equations (A.6) and (A.7) from the appendix

ǫ

∫ ∞

0
dk k2

Nc∑

p,q=1

(−1)2p+2q
det

[
ΦΦ̃

∣∣
q,p

]
det

[((
ΦΦ̃ − ǫ1)2

+ k2 1)∣∣∣
p,q

]

det
[(

ΦΦ̃ − ǫ1)2
+ k2 1]2

= ǫ

∫ ∞

0
dk k2

∑Nc

p=1 det
[(

ΦΦ̃
((

ΦΦ̃ − ǫ1)2
+ k2 1))∣∣∣

p,p

]

det
[(

ΦΦ̃ − ǫ1)2
+ k2 1]2 .

(4.19)

This expression can be simplified using the results of appendix A.2 for the numerator and

of appendix A.3 for the denominator

=ǫ

∫ ∞

0
dk k2

det
[
Φ̃Φ

((
Φ̃Φ − ǫ1)2

+ k2 1)]

(
ik − ǫ

)2(
ik + ǫ

)2
det

[
Φ̃Φ − ǫ1+ ik 1]2

det
[
Φ̃Φ − ǫ1− ik 1]2

=ǫ

∫ ∞

0
dk k2 det

[
Φ̃Φ

]
(
ik − ǫ

)2(
ik + ǫ

)2
det

[
Φ̃Φ − ǫ1+ ik 1]

det
[
Φ̃Φ − ǫ1− ik 1] .

(4.20)

Finally, let us denote the eigenvalues of the matrix Φ̃Φ as σj with j = 1, . . . , Nc − 1. Then

one obtains for equation (4.17) the following expression

Ibos(Φ, Φ̃) =

∫
d4x d2θ det

[
Φ̃Φ

]

× ǫ

∫ ∞

0
dk

k2

(
ik − ǫ

)2(
ik + ǫ

)2 ∏Nc−1
j=1

(
σj − ǫ + ik

)(
σj − ǫ − ik

) . (4.21)

Let us denote the integrand in the last line as f(k). Due to the symmetry k → −k of the

integral and the vanishing of the integrand at infinity, one can rewrite (4.21) as a contour

integral

Ibos(Φ, Φ̃) =

∫
d4x d2θ det

[
Φ̃Φ

] ǫ

2πi

∮
f(k) (4.22)

over the upper half-plane, for instance. The contour integral can be evaluated by virtue of

the residue theorem

ǫ

2πi

∮
f(k) = ǫ Res [f(k), k = iǫ] + ǫ

Nc−1∑

j=1

Res [f(k), k = i(σj − ǫ)] . (4.23)

Generically, all eigenvalues of the matrix Φ̃Φ are nonzero and one finds for the first term

ǫRes [f(k), k = iǫ] = − i

4

1
∏Nc−1

j=1

(
σj − 2ǫ

)
σj


1 +

Nc−1∑

j=1

2ǫ2

(
σj − 2ǫ

)
σj


 . (4.24)
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For the calculation of all the other residues in (4.23) one can assume that |σj | > ǫ. There-

fore, the limit ǫ → 0 can be performed before evaluating the residue and so all these terms

vanish. Taking the limit ǫ → 0 in expression (4.24), the result simplifies drastically and

one obtains

lim
ǫ→0

Res [f(k), k = iǫ] = − i

4

1
∏Nc−1

j=1 σ2
j

= − i

4

1

det
[
Φ̃Φ

]2 . (4.25)

Using this result for the contour integration, we arrive at our final result for the bosonic

zero mode integration

Ibos(Φ, Φ̃) =

∫
d4x d2θ

1

det
[
Φ̃Φ

] . (4.26)

The last step to obtain the E2-instanton generated superpotential (2.2) is to include

the contribution of exp(〈1〉disc)

SW =
2π2

ℓ3
s

∫
d4x d2θ

1

det
[
Φ̃Φ

] exp

(
− 8π2

g2
c (Ms)

)
(4.27)

with Ms = (α′)−1/2. Transforming to canonically normalised matter fields, Φ =

(2πα′)1/2 Φphys, we get

SW = N

∫
d4x d2θ

M
2Nf +3
s

det
[
Φ̃physΦphys

] exp

(
− 8π2

g2
c (Ms)

)
, (4.28)

where we have collected all numerical factors appearing during the computation into the

constant N .

Using (4.2) for the dynamically generated scale Λ, while absorbing the numerical factor

into Λ, gives precisely the ADS superpotential

SW =

∫
d4x d2θ

Λ3Nc−Nf

det[Mff ′ ]
. (4.29)

Therefore, we have derived the ADS superpotential in the field theory limit from a D-brane

instanton. As mentioned, in string theory there will be numerous corrections to this simple

expression. All the massive string states will appear in the one-loop determinant and

there will be an infinite series of world-sheet instanton corrections to the disc amplitudes.

Moreover, multiple matter field insertions along the boundary of the disc are possible and

give higher α′ corrections to the ADS superpotential. Note that these higher order terms

will break some of the global symmetries, like R-symmetry, present in the field theory limit.

Therefore, one warning is in order at this point:

Whenever one simply extends, for instance, string flux superpotentials by non-

perturbative superpotentials from pure field theory, like the ADS superpoten-

tial, one has to ensure that one always remains in the regime of validity of the

field theory limit of string theory, i.e. at large transversal radii and small VEVs

for the matter fields, i.e. 〈Φ〉 ≪ Ms.
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We would also like to add a few methodological remarks concerning our derivation of

the ADS superpotential. Recall that Affleck, Dine and Seiberg inferred the form of their

superpotential solely from considerations of symmetry and then calculated that it is in fact

generated by instantons. Therefore, whenever one has constructed an SQCD theory with

Nf = Nc − 1, regardless of its origin, it is a priori clear that it should feature an ADS

superpotential. In this regard, our stringy calculation of the ADS superpotential can also

be considered a benchmark for the instanton calculus of [21], showing in a non-trivial way

that the prescription given there leads to the correct, known result in our setup.

5. Superpotentials for the other classical gauge groups

The natural question now is whether our results can be generalised to other known cases of

dynamically generated superpotentials for N = 1 super Yang-Mills theories. Indeed, field

theories with USp(2Nc)
8 and SO(Nc) gauge group with Nf flavours have been discussed

in the literature.

These gauge groups are realised on branes lying right on top of the orientifold plane.

The first question to address is how the instanton zero mode structure is modified. So

imagine starting with a stack of Nc branes and an instanton wrapping the same three-cycle

on the internal manifold. As outlined in section 2 there are Nc fermionic zero modes βc and

2Nc bosonic zero modes bc,
¯̃
bc from strings starting on the instanton and ending on the D6-

brane as well as Nc fermionic zero modes β̃c and 2Nc bosonic zero modes b̄c, b̃c from strings

starting on the D6-brane and ending on the instanton. Upon adding an orientifold plane

wrapping the same cycle as the branes (and the instanton) only one linear combination of

βc and β̃c, bc and b̃c as well as b̄c and
¯̃
bc is kept. This effectively amounts to identifying βc

with −β̃c, bc with −b̃c and b̄c with −¯̃
bc.

5.1 Symplectic gauge group

Consider now a setup where the orientifold is such that the gauge group on the 2Nc branes

lying on top of it is USp(2Nc). Due to the Dirichlet boundary conditions for the strings

attached to the E2 in the four non-compact dimensions, the gauge symmetry on the in-

stanton is SO(1).9 The gauge symmetry on E2 being trivial, we do not expect D-term

and F-term constraints for E2. And indeed, as can be found for instance in [49], there are

neither bosonic nor fermionic ADHM constraints. The stringy interpretation of this is the

following: At least one field in each interaction term that realises the ADHM constraints

in [27] is odd under the orientifold projection (see also [41]). This is true in particular for

the instanton zero modes θi and thus the corresponding ADHM constraints are absent. As

explained above there are now 2Nc fermionic zero modes βc and 4Nc bosonic zero modes bc,

b̄c. All zero modes βc, bc and b̄c transform in the fundamental representation of USp(2Nc).

Furthermore, we denote the invariant matter strings from the colour brane to the

flavour brane by Φ, those from the flavour to the colour brane by Φ̃ and the fermionic zero

8Our convention is such that USp(2) ∼= SU(2).
9Note that the auxiliary group for field theory instantons in symplectic (and orthogonal, see next section)

gauge groups [49] is nicely reproduced in string theory.
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Figure 4: Brane configuration for an instanton in an USp(2Nc) gauge theory. The dashed line

represents the orientifold plane.

modes from strings between the flavour brane and the instanton by λf and λ̃f . All these

conventions are shown in the extended quiver diagram in figure 4.

In analogy to the U(1) instanton case, to lowest order in α′ the possible disc amplitudes

with insertion of fermionic zero modes are

βc Φ̃cf λ̃f + λf Φfc β̃c = βc Φ̃cf λ̃f + λf Φfc (−β)c = βc

[
Φ̃ , Φ

T
]
cf

[
λ̃

λ

]

f

(5.1)

where we again omitted the VEV brackets for the matter fields. Note that [ Φ̃ , Φ
T

]cf is

a 2Nc × 2Nf matrix since the fields Φ̃cf and Φfc both transform in bifundamental repre-

sentations of USp(2Nc)×U(Nf ). Since the ADHM constraints are absent, the integration

over fermionic zero modes can easily be performed

∫ 2Nc∏

c=1

dβc

Nf∏

f=1

dλfdλ̃f exp


βc

[
Φ̃ , Φ

T
]
cf

[
λ̃

λ

]

f


 = det

[
Φ̃ , Φ

T
]

. (5.2)

However, in order to find a non-vanishing result the following constraint has to be imposed:

Nc = Nf . (5.3)

Furthermore, we have to impose the D-term constraint for the matter fields. This implies

for the VEVs that

Φcf = Φ
T
cf and Φ̃fc = Φ̃

T

fc . (5.4)

Let us now consider the bosonic zero mode integration. To lowest order in α′, the
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contributing disc amplitudes with insertion of bosonic zero modes lead to

1
2 bc

(
Φcf Φfc′ + Φ̃cf Φ̃fc′

)
bc′ + 1

2 b̃c

(
Φcf Φfc′ + Φ̃cf Φ̃fc′

)
b̃c′

=1
2 bc

(
Φcf Φfc′ + Φ̃cf Φ̃fc′

)
bc′ + 1

2

(
−bc

) (
Φcf Φfc′ + Φ̃cf Φ̃fc′

) (
−bc

)

=1
2 bc

(
Φcf Φfc′ + Φ̃cf Φ̃fc′ +

(
Φcf Φfc′

)T
+

(
Φ̃cf Φ̃fc′

)T )
bc′

=b
[
ΦΦT + Φ̃T Φ̃

]
b ,

(5.5)

where in the last line the constraint (5.4) was employed and we again omitted the VEV

brackets. Note that ΦΦT and Φ̃T Φ̃ are 2Nc × 2Nc matrices. Since there are no bosonic

ADHM constraints, the integral over bosonic zero modes to be performed is

∫ Nc∏

c=1

dbc dbc exp
(
b
[
ΦΦT + Φ̃T Φ̃

]
b
)

=
1

det
[
ΦΦT + Φ̃T Φ̃

] . (5.6)

Combining this result with the one from the fermionic integration (5.2) together with (5.4),

one obtains

det
[
Φ̃T ,Φ

]

det
[
ΦΦT + Φ̃T Φ̃

] =
det

[
Φ̃T ,Φ

]

det

[[
Φ̃T ,Φ

][ 0 1Nc1Nc 0

][
Φ̃T ,Φ

]T
] = − 1

det
[
Φ̃T ,Φ

] .
(5.7)

Note however, if we define Q = [ Φ̃T ,Φ ] we can bring this result into the following form

− 1

detQ
= − 1√√√√det

[
Q

[ 0 1Nc

−1Nc 0

]
QT

] = − 1

Pfaff [QJ QT ]
,

(5.8)

where J =
[ 0 1Nc

−1Nc 0

]
. Rescaling the field Q such that it is canonically normalised,

collecting all dimensionful parameters and absorbing all numerical factors into Λ the su-

perpotential becomes

SW =

∫
d4x d2θ

Λ2Nf +3

Pfaff (QJQT )
. (5.9)

This is precisely the form of the superpotential found by Intriligator and Pouliot in their

work [28].

5.2 Orthogonal gauge group

If the orientifold plane has the opposite charge than in the previous case, the gauge group

on a stack of Nc D6-branes lying on top of the O6 plane is SO(Nc) and the gauge group

on the instanton wrapping the same cycle is USp(2) (In this case, the smallest invariant

instanton configuration is given by two E2-branes on top of each other). The flavour brane
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Figure 5: Brane configuration for an instanton in an SO(N) gauge theory. The dashed line

represents the orientifold plane.

stack is realised by Nf D6-branes wrapping a three-cycle which is distinct from the one the

colour branes wrap, but also invariant under the orientifold projection. The gauge group

is assumed to be SO(Nf ). There is thus one chiral supermultiplet Φ transforming in the

vector representations of both SO(Nc) and SO(Nf ).

In the instanton-colour brane sector there are 2Nc fermionic zero modes βA
c and 4Nc

bosonic zero modes bA
c , b̄A

c , where c = 1, . . . , Nc is the O(Nc) index and A = 1, . . . , 2 the

USp(2) one. In addition there are 2Nf fermionic zero modes λA
f (f = 1, . . . , Nf ) from

strings stretching between the instanton and the flavour brane. The brane configuration

together with all massless modes is shown in the extended quiver diagram in figure 5.

The D- and F-terms are adjoint valued such that in this case there are 3 × 3 = 9

bosonic ADHM constraints in agreement with the field theory instanton construction [49].

Analogously, the fermionic ADHM constraints are adjoint-valued, so there are 2× 3 = 6 of

them. The fermionic zero mode integral to be evaluated is thus

∫ 2∏

A=1

Nc∏

c=1

dβA
c

Nf∏

f=1

dλA
f δ(3)(bA

c σi
ABβB

c ) δ(3)(b̄A
c σi

ABβB
c ) exp

(
βA

c ΦcfλB
f

)
. (5.10)

Here, the σi are the three Pauli matrices. Upon evaluating this integral, one finds the

condition Nf = Nc − 3 for the generation of a superpotential from instantons. This is in

agreement with the field theory result [29].

The explicit evaluation of the various bosonic and fermionic zero mode integrals, in-

cluding the ADHM constraints, is non-trivial and we leave this for future work. Eventually

one should recover the known field theory result for the superpotential [29]

SW =

∫
d4x d2θ

Λ2Nf +3

det[ΦT
fcΦcf ′ ]

. (5.11)

6. Conclusions

In this paper, for a local intersecting D6-brane configuration giving rise to SQCD with

Nf = Nc − 1 flavours, we have explicitly computed the one E2-instanton contribution to

the superpotential, where the E2-brane lies on top of the stack of Nc colour branes so that

in the field theory limit it can be interpreted as a gauge instanton. In the field theory
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limit, we indeed recovered the known ADS superpotential, supporting the point of view

that string theory knows about non-perturbative field theory effects. However, when one

simply adds such field theory terms to string or supergravity based superpotentials one

must keep in mind their limitations. Moving away from the field theory limit, there will

appear stringy corrections, which one must control. These are for instance contributions

from massive states in the one-loop Pfaffians. Moreover from the string perspective the

gauge instanton, i.e. E2 on top of D6c, is only one of the many possible E2-instanton

contributions to the superpotential. There can be many other rigid special Lagrangian

three-cycles in a Calabi-Yau manifold, which can support E2-instantons. These will also

give rise to moduli dependent superpotentials, which cannot be seen in pure field theory. In

an honest computation one must either take all these effects into account or must control

them in certain limits of the moduli space.

We have carried out the actual instanton computation in quite some detail, firstly to

show that such string space-time instanton computations can indeed be performed explic-

itly and secondly to provide the mathematical means to actually do it. We think that our

methods are applicable to more general instanton configurations, either admitting a field

theory limit or being completely stringy. It would be interesting to determine ADS like

superpotentials for supersymmetric gauge theories with more general matter fields, con-

taining for instance also symmetric and anti-symmetric matter. It would also be interesting

to derive explicitly the superpotential induced by gaugino condensation from string theory,

i.e. for Nf < Nc − 1 in the case of SQCD with gauge group SU(Nc).
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A. Some relations in linear algebra

A.1 General formulae

For the reader’s benefit, in this subsection we summarise some well-known formulae which

we have used in various places in the main text.

• The derivative of the determinant of a matrix A with respect to the matrix element

Ai,j is (Jacobi)

∂

∂Ai,j
det A = det A ·

(
A−1

)
j,i

. (A.1)
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• The determinant of a block-matrix with mutually commuting matrices A,B,C,D

can be computed using the following formula (Strassen)

[
A B

C D

]−1

=

[
A−1 + A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

]
.

(A.2)

• If the matrices A,B,C,D mutually commute the following holds

det

[
A B

C D

]
= det (AD − BC) . (A.3)

• For an N × N matrix the following relation holds, where, as in the main text, A|k,i

denotes the matrix A without row k and column i

det A δi,j =

N∑

k=1

(−1)i+k Ak,j detA|k,i . (A.4)

• For an N × (N − 1) matrix A and an (N − 1) × N matrix B it is clear that the

determinant of the N × N matrix AB vanishes:

detAB = 0 . (A.5)

• The (i, j)th element of the inverse matrix A−1 is

A−1
i,j = (−1)i+j detA|j,i

det A
. (A.6)

• For N × N matrices A and B the following relation holds

∑

k

det A|i,k · detB|k,j = det AB|i,j . (A.7)

A.2 A determinant formula

Let A be an N × (N − 1) matrix and B be an (N − 1) × N matrix. Then define

Ã =
[
AN,(N−1), 0N,1

]
and B̃ =

[
B(N−1),N

01,N

]
(A.8)
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and note that AB = ÃB̃. Then one finds using (A.7)

N∑

i=1

det
(
AB

((
AB + α1)2

+ β2 1))∣∣∣
i,i

(A.9)

=
N∑

i=1

det
(
AB

(
(AB)2 + 2αAB + α21+ β21))∣∣∣

i,i

=

N∑

i,j=1

detAB
∣∣
i,j

det
(
(AB)2 + 2αAB + α2 1+ β2 1)∣∣

j,i

=
N∑

i,j=1

det ÃB̃
∣∣
i,j

det
(
(ÃB̃)2 + 2αÃB̃ + α2 1+ β2 1)∣∣

j,i

=

N∑

i,j,k=1

det Ã
∣∣
i,k

det B̃
∣∣
k,j

det
(
(ÃB̃)2 + 2αÃB̃ + α2 1+ β2 1)∣∣

j,i
.

Now note that det Ã
∣∣
i,k

and det B̃
∣∣
k,j

are only nonzero for k = N . Therefore one can write

N∑

i,j=1

det B̃
∣∣
N,j

det
(
(ÃB̃)2 + 2αÃB̃ + α21+ β21)∣∣

j,i
det Ã

∣∣
i,N

= det
(
B̃

(
(ÃB̃)2 + 2αÃB̃ + α21+ β21)

Ã
)∣∣∣

N,N

= det
(
(B̃Ã)3 + 2α(B̃Ã)2 +

(
α2 + β2

)
B̃Ã

)∣∣∣
N,N

. (A.10)

Finally, observe that

B̃Ã =

[
BA 0

0 0

]

which then implies that (A.10) is equal to

det
(
(BA)3 + 2α(BA)2 +

(
α2 + β2

)
BA

)

= det
(
BA

((
BA + α1)2

+ β21))
. (A.11)

This computation shows that (A.9) equal to (A.11).

A.3 A formula concerning characteristic polynomials

Let A be an N × (N − k) matrix and B be an (N − k)×N matrix for k = 1, . . . , (N − 1).

Then define

Ã =
[
AN,(N−k), 0N,k

]
and B̃ =

[
B(N−k),N

0k,N

]
(A.12)
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and note that AB = ÃB̃. Furthermore, denote the characteristic polynomial of a matrix

M as χM(σ) and recall that χMN (σ) = χNM (σ) for square matrices M,N . Then it is easy

to see that

det
[
AB + λ1]

= det
[
ÃB̃ + λ1]

=χ eA eB (−λ)

=χ eB eA (−λ)

= det
[
B̃Ã + λ1]

= det




BA + λ

λ
. . .

λ




=λk det
[
BA + λ1]

.

(A.13)
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[19] D. Lüst, S. Reffert, W. Schulgin and S. Stieberger, Moduli stabilization in type-IIB

orientifolds. I: orbifold limits, Nucl. Phys. B 766 (2007) 68 [hep-th/0506090].
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